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Fig. 1: Humans often give abstract navigation directions using simple instruction, relying on the recipient’s commonsense to bridge the
gaps. With CANVAS, robots can interpret and act on these directions like humans do, fostering a shared understanding of the environment.
It shows how robots can use commonsense to translate vague human instructions into concrete actions, navigating across diverse settings
in our COMMAND dataset, which we plan to open-source as valuable resources for imitation learning in commonsense-aware navigation.

Abstract— Real-life robot navigation involves more than just
reaching a destination; it requires optimizing movements while
addressing scenario-specific goals. An intuitive way for humans
to express these goals is through abstract cues like verbal
commands or rough sketches. Such human guidance may
lack details or be noisy. Nonetheless, we expect robots to
navigate as intended. For robots to interpret and execute these
abstract instructions in line with human expectations, they must
share a common understanding of basic navigation concepts
with humans. To this end, we introduce CANVAS, a novel
framework that combines visual and linguistic instructions
for commonsense-aware navigation. Its success is driven by
imitation learning, enabling the robot to learn from human
navigation behavior. We present COMMAND, a comprehensive
dataset with human-annotated navigation results, spanning over
48 hours and 219 km, designed to train commonsense-aware
navigation systems in simulated environments. Our experiments
show that CANVAS outperforms the strong rule-based sys-
tem ROS NavStack across all environments, demonstrating
superior performance with noisy instructions. Notably, in the
orchard environment, where ROS NavStack records a 0%
total success rate, CANVAS achieves a total success rate of
67%. CANVAS also closely aligns with human demonstrations
and commonsense constraints, even in unseen environments.
Furthermore, real-world deployment of CANVAS showcases
impressive Sim2Real transfer with a total success rate of 69%,
highlighting the potential of learning from human demonstra-
tions in simulated environments for real-world applications.

I. INTRODUCTION

Real-life robot navigation scenarios involve addressing
complex objectives that extend far beyond simply reaching
a destination. For example, an agricultural spraying robot
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must maximize field coverage [1], while a package delivery
robot must adhere to road lanes and use crosswalks when
transitioning between sidewalks. [2], [3] In both cases, robots
need to optimize their movements while responding to the
specific requirements of the scenario.

Humans typically communicate these scenario-specific
goals through high-level guidance, such as verbal com-
mands [4]–[6], rough sketches of the desired route [7], [8],
or a combination of both [9]. While such guidance outlines
the robot’s overall objectives, it often lacks the specificity
required for precise execution. To convert these abstract
and imprecise instructions into actionable navigation plans,
robots need commonsense knowledge. In the context of
robotics, commonsense refers to the general understanding
humans naturally use to make decisions, covering aspects
such as human desires, physics, and causality [10]. Robots
must leverage this knowledge to flexibly adjust their paths,
ensuring their decisions align with human expectations by
adhering to commonsense constraints posed by the environ-
ment and the user’s true intentions.

In response to these challenges, we introduce CANVAS
(Commonsense-Aware NaVigAtion System), a novel frame-
work for integrating abstract human instructions into robot
navigation. Our approach utilizes both visual and linguistic
inputs, such as rough sketch trajectories on map images
or textual descriptions. These multimodal instructions are
processed by a vision-language model that generates incre-
mental navigation targets. By leveraging the commonsense
knowledge embedded in pre-trained vision-language mod-
els [11]–[14], robots can develop a versatile understanding of
commonsense navigation dynamics. Quantifying successful
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navigation behaviors using rewards [15]–[17] is particularly
difficult in commonsense-aware navigation. Therefore, we
employ imitation learning, enabling the robot to comprehend
user intent behind noisy and imprecise instructions from
human demonstrations. [18]

Additionally, we introduce COMMAND (COMMonsense-
Aware Navigation Dataset), a comprehensive dataset de-
signed to train commonsense-aware navigation robots. The
dataset features three simulated environments with distinct
characteristics (office, street, and orchard). To facilitate im-
itation learning for instruction-following tasks, we provide
3,343 fully human-annotated navigation results from the
simulated environments. Notably, COMMAND offers 48
hours of driving data, which is nearly three times longer than
GoStanford [19], covering 219 km and thereby enriching
the dataset’s diversity and scope. Furthermore, we propose
two metrics to evaluate the commonsense adherence of
navigation algorithms: Trajectory Deviation Distance (TDD)
and Instruction Violation Rate (IVR).

Our results show that CANVAS consistently outperforms
ROS NavStack [20] across all environments with noisy
sketch instructions. Particularly in the challenging orchard
environment, CANVAS navigates effectively, while ROS
NavStack fails due to its reliance on rule-based algorithms
[21]. CANVAS ’s trajectory closely mirrors human demon-
strations with fewer commonsense constraint violations, indi-
cating a better understanding of human expectations. Despite
being trained only on simulated data, CANVAS also excels in
real-world scenarios, demonstrating strong Sim2Real transfer
capabilities.

Our contributions are threefold:
1) We introduce CANVAS, a novel framework that allows

humans to easily communicate with robots using multi-
modal inputs, ensuring that robots effectively achieve
navigation goals, even when human instructions are
vague or noisy.

2) We introduce COMMAND, a dataset for training
commonsense-aware navigation robots, featuring 48
hours of driving data over 219 kilometers, with fully
human-annotated sketch instruction and navigation
outcomes.

3) We present extensive experiments demonstrating that
CANVAS outperforms ROS NavStack in success rate,
collision rate, trajectory deviation distance, and instruc-
tion violation rate. To support further research, we are
open-sourcing CANVAS and COMMAND for imita-
tion learning in commonsense-aware robot navigation.

II. RELATED WORK

A. Robot Navigation

Historically, robot navigation systems were largely rule-
based [21]–[23], relying on a set of predefined rules, as
seen in frameworks like the ROS NavStack [20]. Following
the successful application of deep learning to robotics, more
flexible neural navigation approaches have emerged. Visual
navigation models, such as NoMaD [24], ViNT [25], and

GNM [26], utilize images as goal representations. However,
since their high-level planning heavily relies on the topolog-
ical graph with first-person visual observations, they cannot
handle unvisited locations and are sensitive to environmental
changes. [27] Vision-language navigation integrates visual
information from sensors with language instructions [5], [6],
[28]. However, the ambiguous nature of language instruc-
tions poses limitations on controlling detailed navigation
routes. [29] Recently, LIM2N [9] enabled users to control
robots through natural language and sketch trajectories,
combining high-level goals with precise motion paths for
more intuitive interaction. However, the system’s demand for
highly accurate and detailed instructions, coupled with its
vulnerability to missing details or small mistakes, reduces
its usability for non-expert users and limits its effectiveness
in a broader range of real-world applications [4].

Our proposed method, CANVAS, differentiates itself by
addressing the challenge of interpreting abstract or noisy
human instructions. CANVAS converts visual and linguistic
instructions into detailed navigation actions, utilizing com-
monsense knowledge to fill in the gaps. This integration
of commonsense enables CANVAS to dynamically adapt
its navigation strategies across diverse contexts, resulting in
enhanced task execution compared to ROS NavStack.

NoMaD [24] NaVid [6] LIM2N [9] CANVAS
Instruction Image Language Sketch, Language Sketch, Language
Misleading (III-A.3) ✗ ✗ ✗ ✓
Custom Dataset ✗ ✓ ✓ ✓
Environment Real Real Real, Simulation Real, Simulation
Scenes Indoor, Outdoor Indoor Indoor Indoor, Outdoor

TABLE I: Comparison between various robot navigation methods.

B. Imitation Learning in Robotics

Imitation Learning (IL) enables agents to learn tasks by
mimicking expert demonstrations, eliminating the need for
predefined rules or reward functions typically required in
Reinforcement Learning (RL) [30]. By directly leveraging
expert behavior, IL has proven particularly advantageous in
situations where designing a reward function is challenging
or exploration involves potential risks [31]. As a result, there
has been a growing interest in applying IL to robot naviga-
tion [32], [33]. A key challenge in IL is modeling multimodal
action distributions [34]. One solution is to quantize actions
into discrete tokens, simplifying the action space [34]–[38].
Autoregressive prediction of quantized actions effectively
reduces the complexity of modeling diverse and feasible
action sequences.

CANVAS builds upon this idea by converting continuous
waypoints into 128 discrete waypoint tokens using K-means
clustering [39], [40]. This approach enhances the ability of
robots to model multimodal action distributions, enabling
robust navigation strategies that adapt to diverse human
instructions and environmental variations.

III. DATASET AND TASK

An interactive robot navigation framework should fulfill
two key objectives: first, humans should be able to communi-
cate desired routes and requirements intuitively; second, the



Fig. 2: Data collection pipeline for COMMAND dataset. (a) First, we create diverse navigation environments and extract maps. (b) Then,
human annotators sketch routes on the maps based on the guidelines. (c) Finally, we use teleoperation to collect human demonstrations.
Red line shows the roughly sketched routes, while the blue line shows the human-demonstrated trajectory. FD refers to Frechet distance.

robot should accurately interpret and execute those instruc-
tions. However, achieving these goals can be challenging.
Simplifying communication for humans often complicates
it for robots because humans naturally assume the listener
shares their commonsense knowledge. This commonsense
allows humans to infer meaning even when instructions are
incomplete or imprecise but also causes robots to struggle
without explicit and precise input.

To address this challenge, we introduce COMMAND—a
comprehensive experiment suite designed to assess whether
robots can use commonsense understanding to transform ab-
stract or occasionally noisy human instructions into the most
desired trajectory. COMMAND was collected in three dis-
tinct environments: office, street, and orchard, using NVIDIA
Isaac Sim [41]. The data consists of high-quality sketch
instruction labels and teleoperation data, all by human
experts. COMMAND contains 48 hours of driving data
covering a distance of 219 kilometers. In this section, we
describe the dataset curation process and the task definition
that builds upon it.

A. Dataset

A datapoint in COMMAND includes a canvas map, sketch
and language instructions, commonsense constraints, and
teleoperation records. The canvas maps, linked to each
environment, not only provide occupancy information but
also serve as a communication interface between humans
and robots. We assume humans provide instructions in two
modalities: sketch instructions S that consist of hand-drawn
trajectories on maps for the robot to follow, and language
instructions L that outline goals and related requirements.
When collecting sketch instructions S, we introduce both
Precise and Misleading conditions to gather training data
that enables our model to handle noisy sketch instructions
more robustly. In addition to the instructions, we define a
set of commonsense constraints C, which are derived from
the navigation environment E and the language instructions
L. These constraints help evaluate whether the robot exhibits
appropriate navigation behaviors, such as using crosswalks.
We also include human teleoperation records to optimize
and evaluate the robot behavior against human actions. An

overview of our data collection pipeline is illustrated in
Figure 2, and the statistics are provided in Table II. We detail
each step below.

1) Environments: COMMAND features three simulated
environments, each tailored to specific scenarios. The simu-
lated environments include tasks such as coffee delivery in
an office, package delivery on the street, and agricultural
spraying in an orchard. An expert designer creates each
simulated environment using Unreal Engine [42].

2) Canvas Map Extraction: The simulated environments
are subsequently exported to NVIDIA Isaac Sim, where
occupancy maps are extracted programmatically.

3) Sketch Instruction Labeling: The data workers draw
sketch trajectories on the canvas maps following sketch
guidelines manually crafted by the authors. When the Precise
condition is included, the workers trace the most efficient
route, closely following the guidelines. In contrast, when the
Misleading condition is included, data workers are instructed
to deliberately introduce noise by drawing trajectories that
pass through walls or objects. All sketch instructions undergo
manual inspection to ensure quality.

4) Teleoperation: The data workers are then provided
both the sketch and language instructions to teleoperate the
virtual robot in NVIDIA Isaac Sim. We record front view
images and canvas map images along with the human-drawn
trajectory. After collecting the teleoperation data, we adopt
the Frechet distance (FD) [43] to measure the discrepancy
between the sketch trajectory and the human-demonstrated
trajectory. This metric, which indicates noise in the sketch
instructions, tends to be higher in the Precise condition and
lower in the Misleading condition.

B. Task Definition

At each timestep t, the robot R manages two states: the
front view image Xf (t) and the robot’s hindsight trajec-
tory [44] up to timestep t − 1, denoted as H(t). The front
view image Xf (t) is captured by the robot’s camera, while
H(t) is tracked through odometry to log the robot’s past
positions. We combine the sketch instruction S and hindsight
trajectory H(t) onto the same map to create the canvas map
image Xc(t). At each step, the robot R generates an action



Split Train Test

Environment Office Street Orchard Office Street Orchard Gallery Real
Road Sidewalk Road Sidewalk Office

Count 2,263 403 410 267 10 20 10 10 10 10
Avg. Time 31s 57s 103s 172s 39s 56s 127s 182s 76s 30s
Avg. Distance 32.8m 80.4m 150.0m 191.6m 38.7m 91.0m 152.0m 232.88m 48.8m 16.0m
Avg. FD (P / M) 1.05 / 1.77 0.97 / 2.02 3.03 / 3.50 1.91 / 3.76 0.77 / 1.62 1.28 / 1.65 1.32 / 2.33 1.51 / 2.27 0.68 / 1.36 1.44 / 1.63
% of Misleading 31% 51% 51% 40% 50% 50% 50% 50% 50% 50%

TABLE II: Statistics for the train and test set. The train dataset includes 48 hours of driving data over 219 kilometers, while the test
dataset consists of 1.6 hours. FD refers to Frechet distance, where (P / M) stands for Precise and Misleading. The unit of FD is meters.

y(t) = [w0, w1, w2, w3], which is a sequence of waypoints.
This action is conditioned on the front view image Xf (t),
the canvas map image Xc(t), and the language instruction
L. Formally, the robot’s action is defined as:

y(t) = R(Xf (t), Xc(t), L)

At the end of each iteration, the hindsight trajectory is
updated by appending p(t), which represents the robot’s
position updated through predicted waypoints y(t), resulting
in H(t+ 1) = (p(1), p(2), ..., p(t)). This update is reflected
in the next canvas map image Xc(t + 1), while the front
view image Xf (t+ 1) is also updated based on the robot’s
new position. This process continues until the robot either
reaches the destination (within 0.5 meters) or a maximum
timestep t = T is reached.

IV. METHOD

To address the problem formulated in Section III, we intro-
duce CANVAS, a navigation system designed to bridge the
gap between abstract human instructions and concrete robot
actions by leveraging commonsense understanding from pre-
trained vision-language models (VLMs) [45]. In this section,
we provide an overview of the model architecture, as well
as the training and inference processes.

A. Architecture

The model architecture is illustrated in Figure 3. We adopt
a VLM denoted as πθ. The front view image Xf (t) and
canvas map image Xc(t) are processed through a vision
encoder gϕ(·). This results in two visual features, Zf =
gϕ(Xf (t)) and Zc = gϕ(Xc(t)). A projector pϕ is used to
project these visual features into the word embedding space,
producing a sequence of visual tokens τv = pϕ(Zf , Zc).
A sequence of language tokens τl is also obtained from
the language instruction L. Both the visual tokens τv and
language tokens τl are then fed into the large language
model denoted as fϕ(·), which outputs the waypoint tokens
[w0, w1, w2, w3] = fϕ(τv, τl). Due to the reasons mentioned
in Section II-B, we apply the simplest method, K-means
clustering, to discretize continuous waypoints into tokens,
with empirical testing showing that K=128 outperformed 32,
64, or 256. Fewer tokens can hinder precise actions like
navigating narrow passages.

B. Training

CANVAS is designed to generate actions as a sequence of
waypoint tokens. A robot’s trajectory can be represented by
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Fig. 3: Overview of the CANVAS framework. It processes the front
view image Xf (t), canvas map Xc(t), and language instruction L
to generate waypoint tokens, which are passed to a PD controller
to move the robot.

N consecutive waypoints. During training, we minimize the
negative log-likelihood loss, which is formulated as follows:

J(πθ) =

N∑
n=1

3∑
t=0

log πθ (w
n
t | Xf (t)

n, Xc(t)
n, Ln)

The model reframes the navigation as a classification prob-
lem, where it predicts the next waypoint based on the current
state and given instructions. As explained in Related Work
Section II-B, by treating navigation as a classification task,
the model can manage multimodal distributions, enhancing
both stability and accuracy in complex environments.

C. Inference

During inference, the model-generated discrete waypoint
tokens convert into continuous waypoints, which are then in-
put into a Proportional-Derivative (PD) controller to produce
linear and angular velocities (v, ω) for the robot’s actuators.

V. EXPERIMENTS

In this section, we aim to answer the following questions:
A. Can CANVAS handle a variety of commonsense-aware

navigation tasks in simulated environments?
B. Can CANVAS be transferred to a real-world environ-

ment in a zero-shot manner?
C. How much does leveraging the pre-trained weights of

the VLM enhance CANVAS ’s performance?
D. When NavStack fails, in what ways can CANVAS

succeed?
E. Is CANVAS fast enough for real-time navigation?



Fig. 4: The left side of the figure compares CANVAS-L and CANVAS-S, showing CANVAS-L using the crosswalk despite a misleading
sketch instruction. The right side compares CANVAS-L and NavStack, illustrating CANVAS-L avoiding small obstacles, such as rocks.

Experimental Setup. In COMMAND, successful naviga-
tion requires the robot to reach the target location without
collisions, while also respecting commonsense constraints.
As a result, four key metrics were used to evaluate per-
formance: SR, CR, TDD, and IVR. Success Rate (SR)
represents the proportion of successful episodes, while Col-
lision Rate (CR) captures the proportion of episodes with
collisions. Trajectory Deviation Distance (TDD) measures
how closely the model follows human demonstrations, us-
ing the interquartile mean of Frechet distances. Finally,
Instruction Violation Rate (IVR) assesses the proportion of
episodes where human evaluators identified violations of
commonsense constraints, such as keeping to the right lane
or using crosswalks. TDD was calculated only for success
cases, as including failure cases would skew the metric.

We compare CANVAS with ROS NavStack [20], a
straightforward yet effective rule-based navigation system.
For this system, we converted the sketch instructions into
step-by-step, point-to-point inputs, but language instructions
could not be accommodated. The same hyperparameters were
used for all experiments with NavStack. We evaluate two
variations of CANVAS. CANVAS-S modifies the original
Idefics2 8B [45] by swapping the vision encoder for SigLIP-
L [46] and the text encoder for Qwen2-0.5B [47], reducing
the model size from 8B to 0.7B to better accommodate
real-world deployment. In contrast, CANVAS-L retains the
original Idefics2 8B [45] architecture with its pre-trained
weights. Both models utilize 128 waypoint tokens. In the
main experiments, both models were inferred using single
NVIDIA H100 GPU. All experiments were evaluated over
three iterations for each test dataset, with randomized starting
orientations. In the real-world environment, SLAM with
FAST-LIO2 [48] was used to find the robot’s current position.

A. Results in the Simulated Environments

Seen Environments. Table III shows CANVAS’s perfor-
mance in three seen environments: office, street (road, side-
walk), and orchard. Under precise instructions, CANVAS
achieves similar SR and CR to NavStack in the office and
street (road), where navigation is easier, indicating that CAN-
VAS can learn the essential navigation behaviors effectively
from human demonstrations. However, in more challenging

Method Precise Misleading Total
SR(↑) CR(↓) TDD(↓) SR(↑) CR(↓) TDD(↓) SR(↑)

Seen Environment
Office

NavStack 87% 13% 0.846m 0%* 100%* - -
CANVAS-S 100% 0% 0.730m 87% 13% 0.843m 93%
CANVAS-L 100% 0% 0.802m 100% 0% 0.753m 100%

Street (Road)
NavStack 100% 0% 1.654m 0%* 100%* - -

CANVAS-S 100% 0% 1.189m 100% 0% 1.075m 100%
CANVAS-L 97% 3% 1.117m 97% 3% 1.236m 97%

Street (Sidewalk)
NavStack 53% 53% 1.450m 0%* 100%* - -

CANVAS-S 60% 40% 1.451m 47% 53% 2.379m 54%
CANVAS-L 87% 13% 1.394m 53% 47% 1.839m 70%

Orchard
NavStack 0% 87% - 0%* 100%* - -

CANVAS-S 73% 60% 1.561m 60% 33% 1.448m 67%
CANVAS-L 67% 47% 1.759m 60% 53% 1.392m 64%

Unseen Environment
Gallery

NavStack 100% 0% 0.783m 0%* 100%* - -
CANVAS-S 87% 13% 0.773m 33% 66% 0.938m 60%
CANVAS-L 100% 7% 0.9m 33% 66% 0.856m 67%

TABLE III: Evaluation results on simulated environments. *:
NavStack was not tested in the misleading scenario because it is
not equipped to handle such situations.

Environment Method Precise Misleading
IVR(↓) IVR(↓)

Street (Road)
NavStack 7% 100%*

CANVAS-S 0% 7%
CANVAS-L 17% 30%

Street (Sidewalk)
NavStack 7% 100%*

CANVAS-S 0% 26%
CANVAS-L 0% 13%

TABLE IV: Evaluation of violation rates for commonsense con-
straints in a street environment.

environments like the street (sidewalk) and orchard, CAN-
VAS significantly outperforms NavStack. A detailed analysis
of CANVAS’s performance is provided in Section V-D.

Table IV compares the IVR between CANVAS and
NavStack. In the street (road), commonsense constraints
include lane adherence, while in the street (sidewalk), they
involve crossing roads correctly and staying on the sidewalk.
CANVAS consistently achieves lower IVR, even with mis-
leading instructions, by learning commonsense driving rules
from demonstrations, unlike NavStack’s reliance on explicit
programming.
Unseen Environment. We exclude the gallery environ-
ment during training to evaluate CANVAS’s performance



Fig. 5: We developed a physical robot and created a realistic
simulated environment that replicates real-world conditions.

in unseen settings. As demonstrated in Table III, CANVAS
continues to show strong navigation capabilities, even in
scenarios with noisy guidance.

B. Results in the Real-World Environment
While COMMAND collects human demonstrations across

a variety of simulated environments designed to resemble
real-world conditions, a potential concern is whether these
simulations fully capture the complexity of the real world.
Therefore, it is important to demonstrate that the CANVAS’s
effective navigation in simulation can extend to real-world
environments. As shown in Figure 5, to assess its real-
world performance, we tested CANVAS in an actual office
environment that was used as the basis for the simulation.
Despite being trained solely on simulated data, CANVAS
demonstrated strong Sim2Real transfer capabilities, perform-
ing reliably in real-world scenario.

Method Precise Misleading Total
SR(↑) SR(↑) SR(↑)

NavStack 100% 0%* -
CANVAS-S 77% 60% 69%
CANVAS-L 93% 33% 63%

TABLE V: Evaluation results on real environments.

C. Ablation Study
We explore the importance of leveraging pre-trained

weights from the VLM. As demonstrated in Table VI,
these weights were crucial for CANVAS’s performance,
especially in both unseen simulated and real-world settings.
This indicates that the knowledge encapsulated in the pre-
trained VLMs offered a strong foundation for CANVAS to
learn how to incorporate them in developing a generalizable
understanding of driving dynamics.

Environment Method Precise Misleading Total
SR(↑) SR(↑) SR(↑)

Seen - Office CANVAS-L 100% 100% 100%
w/o Pre-training 100% 87% 93%

Unseen - Gallery CANVAS-L 100% 33% 67%
w/o Pre-training 60% 40% 50%

Real - Office CANVAS-L 93% 33% 63%
w/o Pre-training 73% 33% 53%

TABLE VI: Ablation study on the effect of VLM pre-training.

D. Additional Case Study
We perform a qualitative analysis to examine the factors

behind the success of CANVAS in comparison to NavS-
tack [20]. Figure 6 highlights typical failure cases for NavS-
tack, where the robot is unable to reach its destination. In

Fig. 6: We classify the failure cases of NavStack [20] in various
simulated environments.

56% of these cases, failures result from stumbling over rocks
in the orchard environment. Figure 4 compares CANVAS and
NavStack in this primary failure scenario. The orchard has
uneven terrain, and NavStack struggles to avoid small but
hazardous obstacles like rocks because its limited perception
can’t distinguish between rocks and passable areas such as
grass. In contrast, CANVAS utilizes visual inputs from the
camera to reliably detect unexpected obstacles and assesses
their navigation risk based on learned experiences from
demonstrations.

Additionally, we assess CANVAS-S and CANVAS-L on
their adherence to commonsense constraints. As shown in
Figure 4, CANVAS-S disregards the use of a crosswalk,
whereas CANVAS-L successfully adheres to the implicit
commonsense rule of crossing at designated points.

E. Real-Time Navigation Feasibility Study

Finally, we evaluate the feasibility of deploying CANVAS
in real-time applications. Figure 5 details the robot design.
CANVAS demonstrates real-time inference capabilities, with
an average latency of 400ms for CANVAS-S and 800ms for
CANVAS-L, all within the available memory limits. These
results highlight CANVAS’s potential to efficiently handle
real-world navigation tasks without substantial delays.

VI. CONCLUSION

We present CANVAS, a novel commonsense-aware nav-
igation system that learns from human demonstrations
through imitation learning. CANVAS allows intuitive human
instructions using abstract sketches and natural language
while leveraging commonsense reasoning to bridge the gap
between vague human guidance and concrete robot actions.
With the COMMAND dataset for imitation learning and pre-
trained vision-language models, CANVAS allows robots to
understand implicit human intent and make decisions aligned
with human expectations. Experiments show that CANVAS
outperforms ROS NavStack, a strong rule-based system, with
higher success rates, fewer collisions, and better trajectory
alignment with human demonstrations, all while adhering to
commonsense constraints. Additionally, CANVAS exhibits
strong performance in both unseen and real-world environ-
ments, highlighting its generalization capabilities. By open-
sourcing the COMMAND dataset and CANVAS, we hope to
contribute to active research on imitation learning techniques
for commonsense reasoning in robot navigation.
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[45] H. Laurençon, L. Tronchon, M. Cord, and V. Sanh, “What
matters when building vision-language models?” arXiv preprint
arXiv:2405.02246, 2024. 4, 5

[46] X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer, “Sigmoid loss
for language image pre-training,” in 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), 2023. 5

[47] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li,
D. Liu, F. Huang, et al., “Qwen2 technical report,” arXiv preprint
arXiv:2407.10671, 2024. 5

[48] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct
lidar-inertial odometry,” IEEE Transactions on Robotics, 2022. 5

https://developer.nvidia.com/isaac/sim
https://www.unrealengine.com

	Introduction
	Related Work
	Robot Navigation
	Imitation Learning in Robotics

	Dataset and Task
	Dataset
	Environments
	Canvas Map Extraction
	Sketch Instruction Labeling
	Teleoperation

	Task Definition

	Method
	Architecture
	Training
	Inference

	Experiments
	Results in the Simulated Environments
	Results in the Real-World Environment
	Ablation Study
	Additional Case Study
	Real-Time Navigation Feasibility Study

	Conclusion
	References

