
CUPID: A Real-Time Session-Based Reciprocal
Recommendation System for a One-on-One Social

Discovery Platform
Beomsu Kim∗1, Sangbum Kim∗1, Minchan Kim∗1, Joonyoung Yi1, Sungjoo Ha1

Suhyun Lee1, Youngsoo Lee1, Gihoon Yeom1, Buru Chang2, Gihun Lee†1

1Hyperconnect, 2Sogang University

Abstract—This study introduces CUPID, a novel approach to
session-based reciprocal recommendation systems designed for a
real-time one-on-one social discovery platform. In such platforms,
low latency is critical to enhance user experiences. However,
conventional session-based approaches struggle with high latency
due to the demands of modeling sequential user behavior for
each recommendation process. Additionally, given the reciprocal
nature of the platform, where users act as items for each
other, training recommendation models on large-scale datasets
is computationally prohibitive using conventional methods. To
address these challenges, CUPID decouples the time-intensive
user session modeling from the real-time user matching process
to reduce inference time. Furthermore, CUPID employs a two-
phase training strategy that separates the training of embedding
and prediction layers, significantly reducing the computational
burden by decreasing the number of sequential model inferences
by several hundredfold. Extensive experiments on large-scale
Azar datasets demonstrate CUPID’s effectiveness in a real-world
production environment. Notably, CUPID reduces response la-
tency by more than 76% compared to non-asynchronous systems,
while significantly improving user engagement.

Index Terms—Session-based Recommendation, Reciprocal
Recommendation, Real-time One-on-one Social Discovery

I. INTRODUCTION

Azar is a leading real-time social discovery platform that
connects users for one-on-one video conversations. To facili-
tate these interactions, the platform gathers users who signal
their readiness for immediate video calls into a matching pool.
The platform then matches users from this pool aiming to
maximize overall user satisfaction, measured by the total chat
duration across all pairs. Longer chat durations are indicative
of more engaging and satisfying interactions, thus serving as a
proxy for user satisfaction. In such reciprocal recommendation
systems, where both users need to be mutually satisfied,
the recommendations must reflect the preferences of both
parties [1–3]. Furthermore, as users engage with the platform,
their preferences can change dynamically [4, 5]. For example,
a user might start by wanting to chat casually about favorite
hobbies but later seek deeper conversations about social issues.

In real-time social discovery platforms, adapting to evolving
user preferences is crucial for maintaining engagement and

* These authors contributed equally to this work.
† Corresponding to: Gihun Lee (dylan.l@hpcnt.com).

satisfaction. One effective approach is session-based recom-
mendations [6–8], where a session represents a single visit
or interaction period during which the user actively engages
with the platform. By focusing solely on the current session,
session-based recommendations consider a user’s behavior
within that session rather than building a user profile from
long-term historical data. This approach leverages session-
specific information, enabling the system to respond to dy-
namic preferences [9–13] and address the cold-start prob-
lem [14–18], where new users lack sufficient historical data,
by relying on data from the current session.

However, applying session-based recommendations to recip-
rocal recommendation systems with strict real-time constraints
presents unique and significant challenges. First, conventional
session-based systems build user profiles through computation-
ally intensive session modeling [6, 19–21], which can take sev-
eral seconds and thereby far exceeding the immediate response
times required by platforms like Azar. This delay results in
a bottleneck in delivering timely recommendations. Second,
user behavior in reciprocal systems can evolve rapidly within
a single session, even after each interaction. For example, a
positive interaction might make a user more inclined toward
similar profiles, while a negative experience could shift their
preferences entirely. Moreover, conventional session based
recommendations mostly assume static item representations [6,
22, 23]. In reciprocal systems [2, 24, 25], however, both user
preferences and the items (i.e., other users) change dynam-
ically since users act as both consumers and items. Conse-
quently, each interaction not only updates a user’s preferences
but also impacts other users’ representations, complicating
the recommendation algorithm. These factors make real-time
session-based reciprocal recommendations more complex than
conventional systems. The differences between conventional
session-based recommendation and its application in real-time
reciprocal recommendation are illustrated in Figure 1.

To address these challenges, we propose CUPID, a session-
based reciprocal recommendation system specifically designed
for real-time social discovery platforms. For the inference
efficiency, CUPID aims to minimize the overall time con-
sumption of the recommendation pipeline by decoupling it
from the computationally intensive session modeling for each
user. More specifically, CUPID adopts an asynchronous session

ar
X

iv
:2

41
0.

18
08

7v
1

 [
cs

.I
R

]
 8

 O
ct

 2
02

4

(a) General Session-Based Recommendation (b) Session-Based Reciprocal Recommendation for Real-Time Social Discovery
time

Alice Alice’s session

Bob

static item candidate pool

Bob’s session

time

Alice Alice’s session

Bob Bob’s session

20:13:04 20:13:20 20:14:18

20:14:1820:13:14

matching pool
at 20:11:31

matching pool
at 20:13:20

matching pool
at 20:14:18

: cold-start users

CarolAlice AliceBob
BobCarol

Fig. 1: Difference between (a) conventional session-based recommendations and (b) session-based reciprocal recommenda-
tions for real-time social discovery. The representation of the earmuffs remains unchanged for both Alice and Bob. In contrast,
on real-time platforms, user representations continuously evolve with each session. For instance, after Carol interacts with
both Alice and Bob, her representation changes based on the timing of these interactions. When Bob pairs with Carol, her
representation now reflects her previous interaction with Alice.

modeling approach, where user session representations are
updated separately from the recommendation process. In this
approach, the asynchronously updated user profiles for session
modeling are stored in a separate embedding memory. On the
other hand, the feature embedding, which is computationally
lightweight as it relies on static user information (e.g., country,
gender) or match-related statistics, is updated synchronously.
When a match request arrives, the system retrieves the pre-
computed session embedding from the embedding memory
and combines it with the synchronously computed feature
embedding to estimate the chat duration between users.

To tackle the training complexity inherent in reciprocal
environments, CUPID divides the training process into two
distinct phases. In phase 1, the focus is on training the
embedding layers that model user sessions and features. In
phase 2, these embedding layers are frozen, and the prediction
layer is trained to estimate chat duration using the pre-trained
embeddings. This two-phase strategy reduces significantly the
overall computational cost, which would otherwise be much
higher if both components were trained jointly. By separating
the training process, the embedding layer handles each user
individually rather than modeling interactions between users
for every match. This approach not only lowers the training
cost but also ensures high prediction performance.

In our experiments, we evaluate CUPID using large-scale,
real-world data from Azar. Both offline and online production
tests demonstrate that CUPID significantly reduces the recom-
mendation latency and enhances overall user satisfaction, prov-
ing its effectiveness for real-time reciprocal recommendation
systems. Notably, implementing CUPID increases the average
chat duration by 6.8% for warm-start users and 5.9% for cold-
start users. At the same time, it reduces response latency by
79.7% for the 90-th percentile of users and 75.9% for the 99-th
percentile in the Azar service.

Our main contributions are summarized as follows:

• We systematically formulate session-based reciprocal rec-

ommendation systems for real-time social discovery plat-
forms. To the best of our knowledge, this is the first study
to tackle this specific challenge. (Section II)

• We introduce CUPID, a novel session-based recommen-
dation system for real-time reciprocal recommendation.
Using asynchronous session embedding and a two-phase
training strategy, CUPID improves both inference time
and training efficiency. (Section III)

• We validate the efficacy of CUPID using large-scale
real-world data from Azar. CUPID significantly enhances
recommendation performance in both offline and online
evaluations while meeting strict latency constraints re-
quired in real-time social discovery. (Section IV)

II. PROBLEM FORMULATION

A real-time social discovery platform connects online users
enabling immediate, one-on-one conversations. Let U repre-
sent the set of all users on such a platform. At any given
time t, the matching pool U (t) = {u1, u2, . . . , un} consists
of n users available for matching. As illustrated in Figure 1,
the matching pool U (t) is dynamic, constantly changing as
users log in or out and conversations begin or end. Each user
ui ∈ U (t) is characterized by a set of features Xi (e.g., gender,
country code, and other match-related statistics) and session
information Si = [mi,1,mi,2, . . . ,mi,h], which includes h
matching histories. Each matching history mi,k ∈ Si consists
of the chat counterpart uj and the chat duration yij as follows:

Matching History: mi,k = (ui, uj , yij) . (1)

The goal of the session-based reciprocal recommendation sys-
tem is to optimally pair suitable users from U (t) by considering
their features and matching histories to maximize overall user
satisfaction. We define a recommendation model f(·), which
estimates satisfaction scores sij for all possible pairs of users
(ui, uj):

Satisfaction Score: sij = f(ui, uj) . (2)

time

previous match matching pool

session embedding layer

feature embedding layer

match end

prediction layer

request

+

(a) synchronous user session modeling – high latency

(b) asynchronous user session modeling (ours) – low latency

previous match matching pool
request

feature embedding layer

session embedding layer

embedding memory

prediction layer+

70% savings in latency

lookup (session representation)

sync request async requestsession representation feature representation

match end

update

Fig. 2: System design consideration. (a) The overall latency of the session-based recommendation pipeline largely depends on
the computational time of user session modeling (session embedding layer). (b) Our recommendation system, CUPID, reduces
the latency of the recommendation pipeline by asynchronously conducting user session modeling in parallel with the pipeline.

For the satisfaction score, chat duration yij is used as a
proxy for satisfaction scores, based on the assumption that
longer conversations correlate with higher user satisfaction.
Therefore, the recommendation model’s objective is revised
to predict chat durations ŷij for each user pair:

Predicted Chat Duration: ŷij = f(ui, uj) . (3)

These predictions are used to connect users through effi-
cient matching algorithms designed according to the service’s
business logic. By predicting chat durations, the system can
expedite connections that likely enhance user satisfaction,
successfully addressing the challenges of dynamic user pref-
erences in real-time social discovery platforms.

III. PROPOSED APPROACH: CUPID

In this section, we introduce CUPID, our session-based
reciprocal recommendation system designed for real-world
social discovery services with a focus on low-latency perfor-
mance. We describe the implementation of Cupid and present a
novel training method that efficiently captures mutual interests
among users based on extensive matching histories.

A. System Design Considerations

As highlighted earlier, delivering recommendations with
minimal delay is crucial for real-time social discovery plat-
forms. Any latency may lead to longer wait times for users,
harming user experience and potentially causing them to leave
the service. A key challenge is efficiently modeling short-
term, dynamic user behaviors to capture real-time preferences
and intents. CUPID addresses two primary considerations: (i)
rapidly computing satisfaction scores for all potential user
pairs in the matching pool to minimize latency, and (ii) over-
coming the slower processing times associated with sequence
modeling architectures, such as RNNs or transformers. To

tackle these challenges, we have developed two core strategies
for score computation and session modeling.

Linear Scaling Score Computation We compute the ex-
pected satisfaction score ŷij (i.e., chat duration) by applying
a simple linear transformation to the dot product of user
representations as follows:

ŷij = f(ui, uj) = w(ei · ej) + b, (4)

where ei and ej are the d-dimensional representation of users
ui and uj , respectively. This approach allows us to compute
the matrix of predicted satisfaction scores Ŷ ∈ Rn×n for all
user pairs efficiently using a single matrix multiplication by
leveraging optimized BLAS [26] libraries.

Asynchronous Session Modeling We decouple the compu-
tationally intensive user session modeling from the real-time
matching pipeline by handling it asynchronously. This design
significantly enhances the responsiveness of our recommen-
dation system, enabling CUPID to deliver swift recommenda-
tions, which is essential for maintaining user engagement, as
illustrated in Figure 2. An overview of Cupid’s architecture is
provided in Figure 3. The performance of CUPID is measured
by the Mean Squared Error (MSE) as follows:

LMSE =
1

|D|
∑
m∈D

(ŷij − yij)
2, (5)

where D is the dataset match history of all users. Further
details of CUPID are presented in the subsequent sections.

B. Asynchronous Session Embedding Layer fs

To ensure low-latency recommendations, CUPID models
user behaviors in their sessions asynchronously rather than
synchronously with matching requests. As illustrated in Fig-
ure 2(b), when a user ui’s previous match ends, the session

user 𝓾𝒊

user embedding layer 𝒇𝒖 causal transformer

user feature 𝑿𝒊

session information 𝑺𝒊

Wide & DeepWide & Deep Wide & Deep Wide & Deep

embedding memory 𝑬

𝒎𝒊,𝟏 𝒎𝒊,𝒉𝒎𝒊,𝟐

𝒆𝒊,𝟏𝒎 𝒆𝒊,𝟐𝒎 𝒆𝒊,𝒉𝒎⋯𝒆𝒊,𝟎𝒎

+

𝒆𝒊𝒖 𝒆𝒊,𝒉𝒔

𝒆𝒊

user 𝓾𝒊 user 𝓾𝒋

𝒆𝒊 𝒆𝒋

Exponential Transformation

chat duration prediction layer 𝒇𝒐

Linear Linear

(𝒆𝒊 (𝒆𝒋

)𝒉𝒊𝒋async session embedding layer 𝒇𝒔

𝒆𝒊,𝟐𝒔

⋯

⋯𝒆𝒊,𝟏𝒔𝒆𝒊,𝟎𝒔

sync request async requestsession representation user representation

Fig. 3: An overview of CUPID architecture. The user ui’s features Xi and session information Si are modeled into the user
feature representation eui and the session representation esi via the user feature embedding layer fu and the session embedding
layer fs, respectively. The session representation is asynchronously computed and stored in the embedding memory E.

representation vector esi is computed asynchronously using the
session embedding layer fs. More specifically, each matching
history m in user ui’s session information Si is embedded
into a representation em using Wide& Deep model [27]. This
incorporates features Xi from the user uj , and the features Xj

from the chat counterpart user uj , along with the chat duration
yij . The user session representation esi is then formed from
these matching history representations [emi,1, e

m
i,2, · · · , emi,h]

employing a causal transformer, ensuring that each output esi,k
represents the user’s state after the k-th match, influenced only
by preceding matches. The final session representation esi is
stored in an embedding memory E, replacing any existing
representation. When user ui, requests a new match, the stored
embedding esi is retrieved to predict chat durations. Note
that the session representation may not be updated before the
session representation lookup occurs, as the computation might
still be in progress when a new match is requested. In such
cases, we refer to the session representation retrieved as a
delayed session representation.

This design provides significant advantages: it decouples the
slower user session modeling from the synchronous matching
pipeline, improving both recommendation speed and effi-
ciency. However, asynchronously updating session represen-
tations may cause recent information to be displaced during
inference, as new match data could arrive while the session
representations are still being updated. Despite this, the sys-
tem incurs only a few seconds of delay, so the impact on
performance is negligible. Furthermore, by handling session
information asynchronously, the overall throughput of session
processing is enhanced through the batching of multiple infer-
ences, which also reduces computational costs.

C. Synchronous User Feature Embedding Layer fu

Along with session information, Cupid incorporates user
features such as demographic details (e.g., gender, country)
and other match statistics to capture general user preferences.

We use Wide&Deep [27] as the user feature embedding layer
fu, which processes the user features Xi to generate a repre-
sentation eui = fu(Xi). This representation eui is then used in
the prediction layer to estimate chat duration of users.

D. Chat Duration Prediction Layer fo

The chat duration prediction layer fo aims to accurately
predict the chat duration for a user pair (ui, uj) by combining
their session and feature representations:

ei = esi + eui , ej = esj + euj . (6)

While a simple method to predict chat duration may in-
volve computing the dot product of these user representations
(ei · ej), this can lead to overestimating chat duration for
users with similar profiles, resulting in sub-optimal recom-
mendations when recommending similar users is not always
ideal [28, 29]. To more accurately capture mutual interest while
avoiding overestimation for similar users, we linearly project
user representations into separate latent spaces:

ēi = W1ei + b1, ēj = W2ej + b2, (7)

where W1 and b1 are the learnable weight matrix and bias for
the projection of the representation of user ui, and W2 and
b2 are the corresponding weight matrix and bias for their chat
counterpart uj . Then, the predicted chat duration is estimated
by the dot product of the mapped representations ēi and ēj :

ŷij = ēi · ēj . (8)

Exponential Transformation As plotted in Figure 4, the
actual chat durations follow a long-tailed distribution in real-
world social discovery platforms (blue histogram) in practice.
However, when trained with naive MSE objective, predictions
based on the dot product tend to follow a normal distribution
(red histogram), which deviates from the true distribution.

0
Chat Duration

M
at

ch
 C

ou
nt

True Chat Duration y

0
Chat Duration

Predicted Chat Duration y w/o ET

Predicted Chat Duration y w/ ET

Fig. 4: (Left): True chat duration distribution. (Right): Pre-
dicted chat duration with and without exponential transform.

To match predictions with the true distribution, we apply an
exponential transformation to Equation 8 as follows:

ŷij = fo(ei, ej) = exp (w (ēi · ēj) + b) , (9)

where w and b are learnable parameters.
As a result, the exponential transformation effectively ad-

justs the predicted durations to match the long-tailed distribu-
tion of actual chat durations (green histogram) with minimal
computational overhead.

E. Two-Phase Training
Training session-based recommendation systems in real-

time contexts poses significant computational challenges due
to the dynamic nature of user representations. Each user’s
preferences evolve after each interaction, requiring the system
to frequently update their session representations to accurately
reflect their current state. To make precise recommendations,
the system must consider the updated session data for both
users involved in each match. Traditionally, this involves
processing and updating the session data for both the initiating
user ui and their chat counterpart uj separately using complex
models like transformers. For each user, the causal transformer
processes their session history with a computational complex-
ity of O(|S|2), where |S| is the average session length per
user. Modeling both users separately effectively doubles the
computational cost, making it computationally intensive.

Moreover, accurately predicting matches requires jointly
modeling how the sessions of ui and uj interact, which
significantly increases computational overhead. This is be-
cause every interaction in ui’s session might influence and
be influenced by every interaction in uj’s session, expand-
ing the interaction space exponentially. In a naive approach,
considering cross-attention between both users’ sequences
could lead to a theoretical complexity of O(|S|4). Such high
computational demands make real-time processing prohibitive,
especially in large-scale platforms with millions of users and
high interaction rates like Azar. The sequential dependencies
inherent in causal transformers further exacerbate the issue,
as each interaction’s representation depends on all previous
interactions, leading to extensive computations. To address
this challenge and improve training efficiency, we propose a
Two-Phase Training Strategy, outlined in Algorithm 1, which
significantly reduces computational overhead during training
without substantially compromising the model’s performance.

Phase 1: Training Embedding Layers The primary goal
of this phase is to efficiently train the user feature embedding

Algorithm 1 Two-Phase Training Strategy
1: Input: feature embedding layer fu, auxiliary feature embedding

layer f̃u, session embedding layer fs, and chat duration predic-
tion layer fo

2: Output: the trained layers fu, fs, and fo
3: # Phase 1 Training (Embedding Layer)
4: repeat
5: for ui ∈ U do
6: compute fs(Si) = [es

i,0, e
s
i,1, e

s
i,2, · · · , es

i,h]
7: for mk = (ui, uj , yij,k) ∈ Si do
8: compute eu

i,k = fu(Xi,k), ẽu
j,k = f̃u(Xj,k)

9: compute LMSE = (fo(e
u
i,k + es

i,k−1, ẽ
u
j,k)− yij,k)

2

10: update fu, f̃u, fs, fo with LMSE

11: end for
12: end for
13: until CUPID converges
14: # Phase 2 Training (Prediction Layer)
15: freeze the feature embedding layer fu and session embedding

layer fs
16: compute eu

i , e
s
i , e

u
j , e

s
j in advance

17: repeat
18: for m = (ui, uj , yij) ∈ D do
19: compute LMSE = (fo(e

u
i + esi , e

u
j + esj)− yij)

2

20: update fo with LMSE

21: end for
22: until CUPID converges

layer fu and the asynchronous session embedding layer fs. We
introduce an auxiliary user feature embedding layer f̃u to assist
in training these layers excluding session information from
the chat counterparts. This reduces the input to (Xi;Si, Xj),
allowing us to leverage the causal transformer to generate
session representations esi,k with a single forward pass per user.
This phase is aimed at minimizing the following objective:

LMSE =
1

|D|
∑
ui∈U

∑
mk∈Si

(
fo

(
eu
i,k + es

i,k−1, ẽ
u
j,k

)
− yij,k

)2
, (10)

where esi,k−1 is the session state of user ui after the (k−1)-th
match for predicting the chat duration of the k-th match.

Phase 2: Training the Chat Duration Prediction Layer In
this phase, we enhance the chat duration prediction layer fo
by fully incorporating session information from both users in
each match (Xi;Si, Xj ;Sj). Thereby, the objective becomes:

LMSE =
1

|D|
∑
ui∈U

∑
mk∈Si

(
fo

(
eu
i,k + es

i,k−1, e
u
j,k + es

j,k−1

)
− yij,k

)2
.

(11)
In this final phase, we discontinue using the auxiliary user
feature embedding layer f̃u from the first phase and freeze the
embedding layers (fu, fs) to improve processing efficiency.
By computing the user feature representations in advance,
subsequent calculations can be optimized.

Computational Complexity Analysis We analyze how our
two-phase training strategy enhances training efficiency, as
detailed in Table I. Let N denote the total number of training
epochs in standard learning, with N1 and N2 for the first
and second phases, respectively. |D| denotes the number of
matching histories in the dataset, and |S| indicates the average
session length per user. In standard training, modeling session

TABLE I: Comparison of the number of causal transformer
inferences with and without our two-phase training.

Phase Time Complexity

w/o Two-phase 2N |D|

w/ Two-phase Phase-1 N1|D|/|S|
(N1 + 2)|D|/|S|

Phase-2 2|D|/|S|

Reduction Factor 2N |S|/(N1 + 2)

representations for both users requires 2N |D| inferences since
both ui and uj need to be processed for each match history
across all epochs. In contrast, the first phase of our method
requires only N1|D|/|S| inferences, as we compute session
representations for only one user per inference and leverage
the average session length to reduce computations. During
the second phase, by pre-extracting user representations and
freezing the embedding layers fs and fu, the total number
of inferences needed is just 2|D|/|S|, regardless of N2.
This method reduces the inferences required by the causal
transformer in fs to:

2N |S|
N1 + 2

compared to 2N |D| in conventional methods. Assuming N =
N1 = 10 and |S| = 128, our method achieves a 213x reduc-
tion in transformer inferences. Considering that transformer
inference constitutes the majority of training latency, this
substantial reduction greatly facilitates the efficient training
of CUPID, even with large datasets.

IV. EXPERIMENTS

A. Experimental Setups

Data Setups The performance of CUPID is evaluated in both
offline and online environments. In the offline evaluation, its
performance is tested in a controlled setting. A large-scale
matching history from Azar is used, consisting of a billion-
scale dataset from millions of user sessions generated over a
month. Data from the last two days is used for validation and
testing, while the remaining data is used as the training set.
In the online evaluation, CUPID’s effectiveness is validated
in real-world conditions to ensure that the gains observed are
consistent in a live service environment.

Evaluation Setups We adopt two baseline models based on
Wide&Deep [27], which were previously used in Azar before
adopting session-based recommendations as follows:
• Wide&Deep: A widely adopted recommendation method
that captures higher-order interactions among input features
using neural networks. It employs user representations ei =
eui and ej = euj are employed in Equation 6 without session
representations esi and esj . Consequently, it relies solely on
static user features and does not include any real-time infor-
mation from user sessions.
• Wide&Deep-S: A variant of Wide&Deep that incorporates
real-time features generated during user sessions. It captures

Entire Warm-Warm Warm-Cold Cold-Cold0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

 (
)

Wide&Deep
Wide&Deep-S

CUPID

Entire Warm-Warm Warm-Cold Cold-Cold0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
RO

C
(

)

Wide&Deep Wide&Deep-S CUPID

Fig. 5: Offline evaluation results on four types of matches.

TABLE II: Online evaluation results across all user segments
in Azar production. The relative performance change of CUPID
compared to the baseline Wide&Deep is reported.

User Segment Average
Chat Duration

Long Match
Ratio

Short Match
Ratio

All users +6.8% +12.6% -2.4%
Warm-start users +6.8% +12.9% -2.3%
Cold-start users +5.9% +9.7% -4.1%

user behaviors while maintaining low latency by leverag-
ing aggregated features from recent match histories, such
as average chat duration, along with existing user features.
This baseline serves to demonstrate the effectiveness of our
sequential approach for modeling user sessions.

For performance evaluation, we use MSE and Area Un-
der the Receiver Operating Characteristic (AUROC). MSE
measures the average squared difference between actual and
predicted chat durations by applying log-scaled chat durations
(ms) to minimize the impact of noise in shorter intervals.
The same log-scaling is also used during the training of our
recommendation models. In contrast, AUROC assesses the
model’s ability to distinguish between potential matches that
result in quality interactions and those that do not. A quality
match is defined as one where the chat duration exceeds a
specific threshold. As latency is another critical factor for real-
time reciprocal recommendation, we also evaluate the latency
improvement achieved by adopting CUPID in the real-world
deployment of Azar.

B. Offline Performance Evaluation

In Figure 5, the overall performances across three match
types are presented. The match types include Entire Match,

TABLE III: The simulation of the deployment environment where user session representations may not up-to-date. We observe
the performance changes by using delayed user session representations stored at time (t− t′), with varying delay time t′.

Method t′
Entire Match Warm-Warm Match Warm-Cold Match Cold-Cold Match

MSE (↓) AUROC (↑) MSE (↓) AUROC (↑) MSE (↓) AUROC (↑) MSE (↓) AUROC (↑)

CUPID

- 0.3968 0.8635 0.3815 0.8735 0.4094 0.8564 0.4214 0.8409
2000ms 0.3989 0.8616 0.3834 0.8719 0.4117 0.8541 0.4239 0.8389
4000ms 0.3990 0.8616 0.3834 0.8719 0.4118 0.8540 0.4239 0.8389
8000ms 0.3993 0.8614 0.3837 0.8717 0.4121 0.8538 0.4242 0.8386

16000ms 0.4004 0.8605 0.3848 0.8710 0.4132 0.8528 0.4254 0.8375

Wide&Deep-S - 0.4197 0.8497 0.3996 0.8655 0.4359 0.8375 0.4539 0.8136

TABLE IV: Ablation test results. SP and ET denote the second phase in our two-phase learning and the exponential transform
in Equation 9, respectively. The performance changes are observed by removing each component.

Components Entire Match Warm-Warm Match Warm-Cold Match Cold-Cold Match

es SP ET MSE (↓) AUROC (↑) MSE (↓) AUROC (↑) MSE (↓) AUROC (↑) MSE (↓) AUROC (↑)

% " " 0.4197 0.8497 0.3996 0.8655 0.4359 0.8375 0.4539 0.8136
" % " 0.4271 0.8464 0.4059 0.8649 0.4436 0.8329 0.4648 0.7995
" " % 0.3996 0.8615 0.3845 0.8712 0.4121 0.8545 0.4239 0.8394

" " " 0.3948 0.8648 0.3797 0.8745 0.4072 0.8577 0.4190 0.8431

TABLE V: Response latency of CUPID in online environ-
ments under the Azar service scenario.

Components 90-th 99-th
percentile percentile

User representation eu 9ms 17ms
Session representation es 236ms 290ms

Synchronous implementation 236ms 290ms

CUPID:Asynchronous 48ms 70ms
implementation (Ours.) (-79.7%) (-75.9%)

which encompasses all categories; Warm-Warm, for matches
between warm-start users; Warm-Cold, for matches between
warm-start and cold-start users; and Cold-Cold, for matches
exclusively between cold-start users. Here, cold-start users
have no previous matching history in the training dataset. The
distribution is 58.1% for Warm-Warm, 35.5% for Warm-Cold,
and 6.3% for Cold-Cold. CUPID consistently outperforms
baseline methods across all categories and metrics.

C. Online Production Performance

While CUPID shows a significant improvement in predicting
satisfaction scores in offline experiments, it may not always
lead to increased user engagement online. To evaluate its real-
world impact, we test CUPID in the production environment
of Azar, comparing it with the baselines. We conduct a
Switchback [30] test instead of an A/B test due to the shared
matching pool, which makes it difficult to independently sep-
arate A/B groups. The results in Table II show improvements
in metrics such as average chat duration and the ratio of
long to short matches, defined by a preset threshold. For all
user segments, CUPID consistently increases the average chat

duration and improves match quality. This demonstrates that
CUPID not only accurately predicts satisfaction scores but
also enhances user experience in a live setting. Meanwhile,
Table V shows the latency improvement achieved by CU-
PID, emphasizing its primary goal of delivering low-latency
recommendations through asynchronous session modeling. In
the real-world deployment of Azar, CUPID reduces latencies
at the 90th and 99th percentiles by up to 79.7% compared
to synchronous computation of session representations in the
matching pipeline. This significant reduction ensures stable
latency, which is essential for real-time services.

D. Effect of Delayed Session Representation

In real deployment, the session representation es might
miss the latest matching histories if a user requests a new
match before the update is complete. The system then uses
a delayed representation, which lacks data from the most
recent matches. To study the impact of this delay, we simulate
an environment where the representation update is delayed
for t′ milliseconds and predict chat durations for users in
the matching pool U (t) using this delayed data. The results
are summarized in Table III. Two main observations emerge.
First, prediction performance slightly decreases as delay time
increases, which is expected since the system design decouples
session modeling from the synchronous matching pipeline
to avoid latency issues. This compromise is acceptable, as
it prevents session modeling from becoming a bottleneck.
Second, even with this delay, the models still outperform
the Wide&Deep-S baseline by a significant margin in all
cases while maintaining similar latency. This shows that the
approach, with its decoupled session modeling, achieves an
optimal balance between latency and prediction performance.

E. Ablation Study

An ablation test is conducted to evaluate the impact of
individual components on CUPID’s performance, focusing
on session representation es, the Exponential Transformation
(ET), and the second phase of the two-phase training strategy.
The results, shown in Table IV, indicate a performance drop
when any component is removed. Excluding the session rep-
resentation results in a significant decline, especially for cold-
start users, underscoring its role in capturing mutual interests.
Skipping the second-phase training also negatively impacts
performance, highlighting its importance in using session
data from both users to improve chat duration predictions.
Additionally, omitting the exponential transformation leads
to poorer performance, underscoring its value in aligning
predicted chat durations with the actual distribution and sta-
bilizing model training.

V. RELATED WORK

Reciprocal Recommendation Reciprocal recommendation
systems differ from conventional in the sense of they aim
to enhance mutual satisfaction through user-to-user recom-
mendations, instead of focusing on item-to-user recommen-
dations [4, 31, 32]. These systems have been widely studied,
especially in contexts like online dating [33–36], and job
search platforms [29, 37–39]. Our work shifts the focus to real-
time reciprocal recommendations, where candidates appear
and disappear dynamically. This is the first comprehensive
study to investigate these complex dynamics in real-time.

Session-Based Recommendation Session-based recommen-
dation systems predict the next item by capturing dynamic
user behaviors and intents within a session. Various mod-
els, such as Markov Chains [40, 41], recurrent neural net-
works [22, 42, 43], graph neural networks [44–47], trans-
formers [20, 48–51], and other attention mechanisms [52–
54] have been utilized for this purpose. Our study extends
session-based recommendations into the underexplored area
of reciprocal recommendation tasks. While [55] examines
sequential recommendations in a two-sided market, it does not
address the low-latency requirements essential for real-time
one-on-one social discovery platforms. In contrast, our work
specifically focuses on meeting these extreme low-latency
constraints, facilitating rapid and efficient user matching in
reciprocal session-based recommendation systems.

VI. CONCLUSION

To the best of our knowledge, this is the first study to
develop a session-based reciprocal recommendation system
optimized for real-time social discovery platforms. Our ap-
proach tackles stringent latency requirements by using asyn-
chronous session modeling, which significantly reduces the
time required for processing. Additionally, we introduce an
efficient two-phase training method that simplifies the com-
plexities of combining session-based and reciprocal recom-
mendations. Our system, validated on a large-scale offline
dataset and in a real-world environment, increases average

chat duration by 6.8% for warm-start users and 5.9% for
cold-start users. Moreover, it achieves over a 76% reduction
in latency compared to purely synchronous methods. This
research opens a new direction for session-based real-time
reciprocal recommendations.

Ethical Statement By introducing CUPID, we aim to en-
hance user engagement and satisfaction through efficient,
personalized matchmaking in social discovery. Using asyn-
chronous session modeling and a two-phase training strategy,
CUPID addresses low latency and dynamic user preferences.
However, deploying such a system involves ethical considera-
tions, including user privacy, data security, and potential algo-
rithmic biases. To address these, we ensure strict adherence to
data protection laws, implement robust security measures, and
commit to developing fairness-aware algorithms with regular
audits to prevent unintended discrimination.

REFERENCES

[1] Z. Zheng, X. Hu, S. Gao, H. Zhu, and H. Xiong, “Mirror:
A multi-view reciprocal recommender system for online
recruitment,” in Proceedings of the 47th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, 2024, pp. 543–552.

[2] B. A. Potts, H. Khosravi, C. Reidsema, A. Bakharia,
M. Belonogoff, and M. Fleming, “Reciprocal peer rec-
ommendation for learning purposes,” in Proceedings of
the 8th international conference on learning analytics
and knowledge, 2018, pp. 226–235.

[3] Y. Zheng, T. Dave, N. Mishra, and H. Kumar, “Fairness
in reciprocal recommendations: A speed-dating study,”
in Adjunct publication of the 26th conference on user
modeling, adaptation and personalization, 2018, pp. 29–
34.

[4] I. Palomares, C. Porcel, L. Pizzato, I. Guy, and
E. Herrera-Viedma, “Reciprocal recommender systems:
Analysis of state-of-art literature, challenges and op-
portunities towards social recommendation,” Information
Fusion, vol. 69, pp. 103–127, 2021.

[5] L. Pizzato, T. Rej, T. Chung, I. Koprinska, and J. Kay,
“Recon: a reciprocal recommender for online dating,” in
Proceedings of the fourth ACM conference on Recom-
mender systems, 2010, pp. 207–214.

[6] S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun,
and D. Lian, “A survey on session-based recommender
systems,” ACM Computing Surveys (CSUR), vol. 54,
no. 7, pp. 1–38, 2021.

[7] S. Wang, Q. Zhang, L. Hu, X. Zhang, Y. Wang, and
C. Aggarwal, “Sequential/session-based recommenda-
tions: Challenges, approaches, applications and opportu-
nities,” in Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 2022, pp. 3425–3428.

[8] M. Ludewig, N. Mauro, S. Latifi, and D. Jannach,
“Performance comparison of neural and non-neural ap-
proaches to session-based recommendation,” in Proceed-

ings of the 13th ACM conference on recommender sys-
tems, 2019, pp. 462–466.

[9] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent
neural networks for session-based recommendations,” in
Proceedings of the 1st workshop on deep learning for
recommender systems, 2016, pp. 17–22.

[10] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cre-
monesi, “Personalizing session-based recommendations
with hierarchical recurrent neural networks,” in proceed-
ings of the Eleventh ACM Conference on Recommender
Systems, 2017, pp. 130–137.

[11] Z. Liu, L. Zou, X. Zou, C. Wang, B. Zhang, D. Tang,
B. Zhu, Y. Zhu, P. Wu, K. Wang et al., “Monolith: real
time recommendation system with collisionless embed-
ding table,” arXiv preprint arXiv:2209.07663, 2022.

[12] Z. Hou, F. Bu, Y. Zhou, L. Bu, Q. Ma, Y. Wang,
H. Zhai, and Z. Han, “Dycars: A dynamic context-aware
recommendation system,” Mathematical Biosciences and
Engineering, vol. 21, no. 3, pp. 3563–3593, 2024.

[13] A. Mahyari, P. Pirolli, and J. A. LeBlanc, “Real-time
learning from an expert in deep recommendation systems
with application to mhealth for physical exercises,” IEEE
journal of biomedical and health informatics, vol. 26,
no. 8, pp. 4281–4290, 2022.

[14] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock, “Methods and metrics for cold-start recommen-
dations,” in Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in
information retrieval, 2002, pp. 253–260.

[15] R. Sethi and M. Mehrotra, “Cold start in recommender
systems—a survey from domain perspective,” in Intelli-
gent Data Communication Technologies and Internet of
Things: Proceedings of ICICI 2020. Springer, 2021, pp.
223–232.

[16] D. K. Panda and S. Ray, “Approaches and algorithms to
mitigate cold start problems in recommender systems:
a systematic literature review,” Journal of Intelligent
Information Systems, vol. 59, no. 2, pp. 341–366, 2022.

[17] N. A. Abdullah, R. A. Rasheed, M. H. N. M. Nasir, and
M. M. Rahman, “Eliciting auxiliary information for cold
start user recommendation: A survey,” Applied Sciences,
vol. 11, no. 20, p. 9608, 2021.

[18] F. Berisha and E. Bytyçi, “Addressing cold start in
recommender systems with neural networks: a literature
survey,” International Journal of Computers and Appli-
cations, vol. 45, no. 7-8, pp. 485–496, 2023.

[19] X. Zheng, R. Wu, Z. Han, C. Chen, L. Chen, and
B. Han, “Heterogeneous information crossing on graphs
for session-based recommender systems,” ACM Transac-
tions on the Web, vol. 18, no. 2, pp. 1–24, 2024.

[20] G. de Souza Pereira Moreira, S. Rabhi, J. M. Lee, R. Ak,
and E. Oldridge, “Transformers4rec: Bridging the gap
between nlp and sequential/session-based recommenda-
tion,” in Proceedings of the 15th ACM Conference on
Recommender Systems, 2021, pp. 143–153.

[21] J. Wang, K. Ding, Z. Zhu, and J. Caverlee, “Session-

based recommendation with hypergraph attention net-
works,” in Proceedings of the 2021 SIAM international
conference on data mining (SDM). SIAM, 2021, pp.
82–90.

[22] S. Liu and Y. Zheng, “Long-tail session-based recom-
mendation,” in Proceedings of the 14th ACM Conference
on Recommender Systems, 2020, pp. 509–514.

[23] C. Hansen, C. Hansen, L. Maystre, R. Mehrotra, B. Brost,
F. Tomasi, and M. Lalmas, “Contextual and sequential
user embeddings for large-scale music recommendation,”
in Proceedings of the 14th ACM Conference on Recom-
mender Systems, 2020, pp. 53–62.

[24] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. S.
Kim, P. Compton, and A. Mahidadia, “Reciprocal and
heterogeneous link prediction in social networks,” in Ad-
vances in Knowledge Discovery and Data Mining: 16th
Pacific-Asia Conference, PAKDD 2012, Kuala Lumpur,
Malaysia, May 29–June 1, 2012, Proceedings, Part II
16. Springer, 2012, pp. 193–204.

[25] P. Xia, B. Liu, Y. Sun, and C. Chen, “Reciprocal rec-
ommendation system for online dating,” in Proceedings
of the 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2015,
2015, pp. 234–241.

[26] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C.
Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry et al., “An updated set of basic linear algebra
subprograms (blas),” ACM Transactions on Mathematical
Software, vol. 28, no. 2, pp. 135–151, 2002.

[27] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra,
H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir
et al., “Wide & deep learning for recommender systems,”
in Proceedings of the 1st workshop on deep learning for
recommender systems, 2016, pp. 7–10.

[28] J. Neve and R. McConville, “Imrec: Learning reciprocal
preferences using images,” in Proceedings of the 14th
ACM Conference on Recommender Systems, 2020, pp.
170–179.

[29] C. Yang, Y. Hou, Y. Song, T. Zhang, J.-R. Wen, and
W. X. Zhao, “Modeling two-way selection preference
for person-job fit,” in Proceedings of the 16th ACM
Conference on Recommender Systems, 2022, pp. 102–
112.

[30] J. Robins, “A new approach to causal inference in mortal-
ity studies with a sustained exposure period—application
to control of the healthy worker survivor effect,” Mathe-
matical modelling, vol. 7, no. 9-12, pp. 1393–1512, 1986.

[31] H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy,
D. Jannach, T. Kamishima, J. Krasnodebski, and L. Piz-
zato, “Multistakeholder recommendation: Survey and
research directions,” User Modeling and User-Adapted
Interaction, vol. 30, pp. 127–158, 2020.

[32] I. Palomares, “Reciprocal recommendation: Matching
users with the right users,” in Proceedings of the 43rd
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2020, pp. 2429–

2431.
[33] J. Neve and I. Palomares, “Latent factor models and

aggregation operators for collaborative filtering in re-
ciprocal recommender systems,” in Proceedings of the
13th ACM conference on recommender systems, 2019,
pp. 219–227.

[34] Y. Tomita, R. Togashi, and D. Moriwaki, “Matching
theory-based recommender systems in online dating,” in
Proceedings of the 16th ACM Conference on Recom-
mender Systems, 2022, pp. 538–541.

[35] A. Alanazi and M. Bain, “A people-to-people content-
based reciprocal recommender using hidden markov
models,” in Proceedings of the 7th ACM conference on
Recommender systems, 2013, pp. 303–306.

[36] K. Tu, B. Ribeiro, D. Jensen, D. Towsley, B. Liu,
H. Jiang, and X. Wang, “Online dating recommendations:
matching markets and learning preferences,” in Proceed-
ings of the 23rd international conference on world wide
web, 2014, pp. 787–792.

[37] J. Jiang, S. Ye, W. Wang, J. Xu, and X. Luo, “Learning
effective representations for person-job fit by feature
fusion,” in Proceedings of the 29th ACM International
Conference on Information & Knowledge Management,
2020, pp. 2549–2556.

[38] Y. Lu, S. El Helou, and D. Gillet, “A recommender
system for job seeking and recruiting website,” in Pro-
ceedings of the 22nd International Conference on World
Wide Web, 2013, pp. 963–966.

[39] R. Yan, R. Le, Y. Song, T. Zhang, X. Zhang, and D. Zhao,
“Interview choice reveals your preference on the mar-
ket: To improve job-resume matching through profiling
memories,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 914–922.

[40] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme,
“Factorizing personalized markov chains for next-basket
recommendation,” in Proceedings of the 19th interna-
tional conference on World wide web, 2010, pp. 811–
820.

[41] R. He and J. McAuley, “Fusing similarity models with
markov chains for sparse sequential recommendation,” in
2016 IEEE 16th international conference on data mining
(ICDM). IEEE, 2016, pp. 191–200.

[42] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk,
“Session-based recommendations with recurrent neural
networks,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2016. [Online]. Available: http:
//arxiv.org/abs/1511.06939

[43] D. Jannach and M. Ludewig, “When recurrent neu-
ral networks meet the neighborhood for session-based
recommendation,” in Proceedings of the eleventh ACM
conference on recommender systems, 2017, pp. 306–310.

[44] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan,
“Session-based recommendation with graph neural net-

works,” in Proceedings of the AAAI conference on arti-
ficial intelligence, vol. 33, no. 01, 2019, pp. 346–353.

[45] J. Guo, Y. Yang, X. Song, Y. Zhang, Y. Wang, J. Bai, and
Y. Zhang, “Learning multi-granularity consecutive user
intent unit for session-based recommendation,” in Pro-
ceedings of the fifteenth ACM International conference
on web search and data mining, 2022, pp. 343–352.

[46] P. Zhang, J. Guo, C. Li, Y. Xie, J. B. Kim, Y. Zhang,
X. Xie, H. Wang, and S. Kim, “Efficiently leveraging
multi-level user intent for session-based recommendation
via atten-mixer network,” in Proceedings of the Sixteenth
ACM International Conference on Web Search and Data
Mining, 2023, pp. 168–176.

[47] Y. Pang, L. Wu, Q. Shen, Y. Zhang, Z. Wei, F. Xu,
E. Chang, B. Long, and J. Pei, “Heterogeneous global
graph neural networks for personalized session-based
recommendation,” in Proceedings of the fifteenth ACM
international conference on web search and data mining,
2022, pp. 775–783.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[49] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and
P. Jiang, “Bert4rec: Sequential recommendation with
bidirectional encoder representations from transformer,”
in Proceedings of the 28th ACM international conference
on information and knowledge management, 2019, pp.
1441–1450.

[50] X. Xia, J. Yu, Q. Wang, C. Yang, N. Q. V. Hung, and
H. Yin, “Efficient on-device session-based recommenda-
tion,” ACM Transactions on Information Systems, vol. 41,
no. 4, pp. 1–24, 2023.

[51] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang,
F. Zhang, Z. Wang, and J.-R. Wen, “S3-rec: Self-
supervised learning for sequential recommendation with
mutual information maximization,” in Proceedings of the
29th ACM international conference on information &
knowledge management, 2020, pp. 1893–1902.

[52] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural
attentive session-based recommendation,” in Proceedings
of the 2017 ACM on Conference on Information and
Knowledge Management, 2017, pp. 1419–1428.

[53] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp:
short-term attention/memory priority model for session-
based recommendation,” in Proceedings of the 24th ACM
SIGKDD international conference on knowledge discov-
ery & data mining, 2018, pp. 1831–1839.

[54] K. Zhou, H. Yu, W. X. Zhao, and J.-R. Wen, “Filter-
enhanced mlp is all you need for sequential recommen-
dation,” in Proceedings of the ACM web conference 2022,
2022, pp. 2388–2399.

[55] B. Zheng, Y. Hou, W. X. Zhao, Y. Song, and H. Zhu,
“Reciprocal sequential recommendation,” in Proceedings
of the 17th ACM Conference on Recommender Systems,
2023, pp. 89–100.

http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939

	Introduction
	Problem Formulation
	Proposed Approach: Cupid
	System Design Considerations
	Asynchronous Session Embedding Layer fs
	Synchronous User Feature Embedding Layer fu
	Chat Duration Prediction Layer fo
	Two-Phase Training

	Experiments
	Experimental Setups
	Offline Performance Evaluation
	Online Production Performance
	Effect of Delayed Session Representation
	Ablation Study

	Related Work
	Conclusion

